Sports Performance Analytics

Recurring

 • 

Online
Share on facebook
Share on twitter
Share on reddit
Share on email
Share on print
Sportsanalytics Specialization Thumbnail
Share on facebook
Share on twitter
Share on reddit
Share on email
Share on print
Presented by Michigan Online

Sports analytics has emerged as a field of research with increasing popularity propelled, in part, by the real-world success illustrated by the best-selling book and motion picture, Moneyball. Analysis of team and player performance data has continued to revolutionize the sports industry on the field, court, and ice as well as in living rooms among fantasy sports players and online sports gambling.

Drawing from real data sets in Major League Baseball (MLB), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier League (EPLsoccer), and the Indian Premier League (IPL cricket), you’ll learn how to construct predictive models to anticipate team and player performance. You’ll also replicate the success of Moneyball using real statistical models, use the Linear Probability Model (LPM) to anticipate categorical outcomes variables in sports contests, explore how teams collect and organize an athlete’s performance data with wearable technologies, and how to apply machine learning in a sports analytics context.

This introduction to the field of sports analytics is designed for sports managers, coaches, physical therapists, as well as sports fans who want to understand the science behind athlete performance and game prediction. New Python programmers and data analysts who are looking for a fun and practical way to apply their Python, statistics, or predictive modeling skills will enjoy exploring courses in this series.

More from the Alumni Education Gateway
We use cookies to ensure you get the best experience on our website. By using this site, you accept our use of cookies.